
Apal I

5' ····G▼TGCAC····3' 3' ····CACGT▲G····5'

ApaL I is a restriction enzyme purified from *Acetobacter pasteurianus* (ATCC 12875).

<u>Catalogue No</u> 148-1, 2000 U

148-2, 3x2000 U

Concentration 10-12u/μl and 40-

60u/µl*

Reagents supplied: 10x L and 10x K buffer

Unit substrate: Lambda DNA.

Unit calculation assay conditions: 10 mM Tris-HCl (pH 7.9 @ 25°C), 10 mM MgCl2, 1 mM dithiothreitol, 100 μ g/ml bovine serum albumin and DNA. Incubate at 37°C.

Absence of contaminants: 100 units of ApaL I do not produce any unspecific cleavage products after 16 hrs incubation with 1 μ g of lambda DNA at 37°C. After 100-fold overdigestion with ApaL I, greater than 98% of the DNA fragments can be ligated and recut with this enzyme.

Storage buffer: 50 mM KCl, 10 mM Tris-HCl (pH 7.4), 0.1 mM EDTA, 1 mM dithiothreitol, 200 μ g/ml bovine serum albumin and 50% glycerol. Store at -20°C.

Heat inactivation: No.

Methylation Sensitivity:

dam methylation: Not sensitive dcm methylation: Not sensitive

CpG methylation: Blocked by overlapping

Percent Activity in MINOTECH Buffers

		•			
L	M	Н	SH	Α	K
100	100	10	<10	10-25	100

General reaction mixture:

10U ApaL I	1μΙ			
10x L or K buffer *	2μΙ			
DNA substrate	<1µg			
Sterile ultrapure water	Up to 20 μl			
Incubate for 15 min at 37°C				

^{*}In the case of L buffer we recommend the addition of BSA to a final concentration of $100 \mu g/ml$.

Frequency of Cutting

λ	Ad-2	Фх174	pUC18	M13mp18	pBR322
4	7	1	3	0	3

Lambda DNA 0.7% agarose

^{*}Add an H to cat.# to order the high concentration